# Find the sum of first N terms of the series 2*3*5, 3*5*7, 4*7*9, …

Given an integer **N**, the task is to find the sum of first **N** terms of the series:

(2 * 3 * 5), (3 * 5 * 7), (4 * 7 * 9), …

Attention reader! Don’t stop learning now. Get hold of all the important DSA concepts with the

DSA Self Paced Courseat a student-friendly price and become industry ready. To complete your preparation from learning a language to DS Algo and many more, please referComplete Interview Preparation Course.In case you wish to attend

live classeswith experts, please referDSA Live Classes for Working ProfessionalsandCompetitive Programming Live for Students.

**Examples:**

Input:N = 3Output:387

S_{3}= (2 * 3 * 5) + (3 * 5 * 7) + (4 * 7 * 9) = 30 + 105 + 252 = 387Input:N = 5Output:1740

**Approach:** Let the **N ^{th}** term of the series be

**T**. Sum of the series can be easily found by observing the

_{n}**N**term of the series:

^{th}

T= {n_{n}^{th}term of 2, 3, 4, …} * {n^{th}term of 3, 5, 7, …} * {n^{th}term of 5, 7, 9, …}T= (n + 1) * (2 * n + 1) * (2* n + 3)_{n}T_{n}= 4n^{3}+ 12n^{2}+ 11n + 3

Sum(**S _{n}**) of first n terms can be found by

S= Σ_{n}T_{n}S= Σ[4n_{n}^{3}+ 12n^{2}+ 11n + 3]S_{n}= (n / 2) * [2n^{3}+ 12n^{2}+ 25n + 21]

Below is the implementation of the above approach:

## C++

`// C++ program to find sum of the` `// first n terms of the given series` `#include <bits/stdc++.h>` `using` `namespace` `std;` `// Function to return the sum of the` `// first n terms of the given series` `int` `calSum(` `int` `n)` `{` ` ` `// As described in the approach` ` ` `return` `(n * (2 * n * n * n + 12 * n * n + 25 * n + 21)) / 2;` `}` `// Driver code` `int` `main()` `{` ` ` `int` `n = 3;` ` ` `cout << calSum(n);` ` ` `return` `0;` `}` |

## Java

`// Java program to find sum of the` `// first n terms of the given series` `class` `GFG {` ` ` `// Function to return the sum of the` ` ` `// first n terms of the given series` ` ` `static` `int` `calSum(` `int` `n)` ` ` `{` ` ` `// As described in the approach` ` ` `return` `(n * (` `2` `* n * n * n + ` `12` `* n * n + ` `25` `* n + ` `21` `)) / ` `2` `;` ` ` `}` ` ` `// Driver Code` ` ` `public` `static` `void` `main(String args[])` ` ` `{` ` ` `int` `n = ` `3` `;` ` ` `System.out.println(calSum(n));` ` ` `}` `}` |

## Python

`# C++ program to find sum of the` `# first n terms of the given series` `# Function to return the sum of the` `# first n terms of the given series` `def` `calSum(n):` ` ` ` ` `# As described in the approach` ` ` `return` `(n` `*` `(` `2` `*` `n` `*` `n ` `*` `n ` `+` `12` `*` `n` `*` `n ` `+` `25` `*` `n ` `+` `21` `))` `/` `2` `;` `# Driver Code` `n ` `=` `3` `print` `(calSum(n))` |

## C#

`// C# program to find sum of the` `// first n terms of the given series` `using` `System;` `class` `GFG {` ` ` `// Function to return the sum of the` ` ` `// first n terms of the given series` ` ` `static` `int` `calSum(` `int` `n)` ` ` `{` ` ` `// As described in the approach` ` ` `return` `(n * (2 * n * n * n + 12 * n * n + 25 * n + 21)) / 2;` ` ` `}` ` ` `// Driver code` ` ` `static` `public` `void` `Main()` ` ` `{` ` ` `int` `n = 3;` ` ` `Console.WriteLine(calSum(n));` ` ` `}` `}` |

## PHP

`<?php` `// PHP script to find sum of the` `// first n terms of the given series` `// Function to return the sum of the` `// first n terms of the given series` `function` `calculateSum(` `$n` `)` `{` ` ` ` ` `// As described in the approach` ` ` `return` `(` `$n` `*(2*` `$n` `*` `$n` `*` `$n` `+12*` `$n` `*` `$n` `+25*` `$n` `+21))/2;` `}` `// Driver code` `$n` `= 3;` `echo` `calculateSum(` `$n` `);` `?>` |

## Javascript

`<script>` `// Javascript program to find sum of the` `// first n terms of the given series` ` ` `// Function to return the sum of the` ` ` `// first n terms of the given series` ` ` `function` `calSum( n) {` ` ` `// As described in the approach` ` ` `return` `(n * (2 * n * n * n + 12 * n * n + 25 * n + 21)) / 2;` ` ` `}` ` ` `// Driver Code` ` ` `let n = 3;` ` ` `document.write(calSum(n));` `// This code is contributed by 29AjayKumar` `</script>` |

**Output:**

387